Рудобашта С.П. Бабичева Е.Л. Теплотехника РГАУ-МСХА Москва
16.185 Для теоретического цикла поршневого двигателя внутреннего сгорания с изохорно-изобарным подводом теплоты определить параметры состояния р, υ, Т характерных точек цикла, полезную работу и термический кпд по заданным значениям начального давления р1 и температуры t1 степени сжатия ε, степени повышения давления λ и степени предварительного расширения ρ. Рабочим телом считать воздух, полагая теплоемкость его постоянной. Изобразить цикл ДВС в рυ- и Ts- диаграммах. Сравнить термический кпд цикла с термическим кпд цикла Карно, проведенного в том же интервале температур t1 ÷ t4. Данные для решения задачи выбрать из таблицы 8.1.

Ответить на вопросы:
1. Дайте определение массовой, объемной теплоемкости.
2. Чему равен термический кпд прямого обратимого цикла Карно?
3. Что такое степень сжатия, степень повышения давления, показатель адиабаты и степень предварительного расширения?
4. Как влияют параметры цикла (ε, λ, ρ) на термический кпд?
5. Как осуществляется впрыск топлива в современных дизелях?
Выбрать вариант задачи
Методические указания 2018 года.pdf
Оформление готовой работы
19.144 Расход газа в поршневом одноступенчатом компрессоре составляет V1 при давлении р1=0,1 МПа и температуре t1. При сжатии температура газа повышается на 200 ºC. Сжатие происходит по политропе с показателем n. Определить конечное давление, работу сжатия и работу привода компрессора, количество отведенной теплоты, а также теоретическую мощность привода компрессора. Исходные данные, необходимые для решения задачи, выбрать из таблицы 8.2.
Указание. При расчете принять: k=cp/cυ=const.

Ответить на вопросы:
1. Как влияет показатель политропы на конечное давление при выбранном давлении р1 и фиксированных t1 и t2 (ответ иллюстрируйте в Ts — диаграмме)?
2. Что такое «мертвое пространство» и как оно влияет на работу компрессора?
3. Что такое «относительный объем мертвого пространства» компрессора?
4. Когда применяется многоступенчатое сжатие? В чем его достоинства?
5. Изобразите в p,υ- и T,s- координатах работу многоступенчатого компрессора.
Выбрать вариант задачи
Методические указания 2018 года.pdf
18.163 Показать сравнительным расчетом целесообразность применения пара высоких начальных параметров и низкого конечного давления на примере паросиловой установки, работающей по циклу Ренкина, определив располагаемое теплопадение, термический КПД цикла и удельный расход пара для двух различных значений начальных и конечных параметров пара. Указать конечное значение степени сухости х2 (при давлении р2). Изобразить схему простейшей паросиловой установки и дать краткое описание ее работы. Данные для решения задачи выбрать из таблицы 8.3.

Ответить на вопрос:
- Какие существуют пути повышения экономичности цикла (помимо изменения начальных и конечных параметров пара)?
Выбрать вариант задачи
Методические указания 2018 года.pdf
23.96 По трубе внутренним диаметром d, мм и длиной L, м протекает вода со скоростью ω, м/с (рис. 2.3). Средняя температура воды – t, °С , а внутренней стенки трубы – tс, °С. Определите коэффициент теплоотдачи от воды к стенке трубы и передаваемый тепловой поток. Исходные данные приведены в таблице 8.4.

Ответить на вопросы:
1. Дайте определение конвективному теплообмену, вынужденной конвекции.
2. Что изучает теория подобия, каково ее назначение?
3. Какие наблюдаются режимы течения жидкости (газа) в трубах? При каких условиях они возникают?
Выбрать вариант задачи
Методические указания 2018 года.pdf
23.102 Электрошина сечением 100×10 мм² и удельным сопротивлением ρ, установленная на ребро, охлаждается свободным потоком воздуха, температура которого tж. При установившейся электрической нагрузке температура электрошины не должна превышать 70 ºС. Вычислить коэффициент теплоотдачи α, величину теплового потока, теряемую в окружающую среду, если длина электрошины l, и допустимую силу тока. Данные, необходимые для решения задачи выбрать из таблицы 8.5.

Ответить на вопросы:
1. Дайте определение свободной конвекции.
2. Что такое определяющие и определяемые числа подобия, уравнение подобия?
3. Каков физический смысл коэффициента теплоотдачи, от чего он зависит?
Выбрать вариант задачи
Методические указания 2018 года.pdf
23.97 Горизонтальная труба длиной L, м и наружным диаметром d, м расположена в помещении, температура воздуха в котором tв, °С. Средняя температура поверхности трубы tс, °С. Определите величину коэффициента теплоотдачи от трубы к воздуху, а также тепловой поток, теряемый трубой. Исходные данные приведены в таблице 8.6.

Ответить на вопросы к задаче №5.
1. Дайте определение свободной конвекции.
2. Что такое определяющие и определяемые числа подобия, уравнение подобия?
3. Каков физический смысл коэффициента теплоотдачи, от чего он зависит?
Выбрать вариант задачи
26.115 Паропровод диаметром d2/d1 (рис. 8.3) покрыт слоем совелитовой изоляции толщиной δ2, мм. Коэффициенты теплопроводности материала трубы λ1, изоляции λ2=0,1 Вт/(м·К). Температуры пара tж1 и окружающего воздуха tж2, °С. Требуется определить линейный коэффициент теплопередачи kl, Вт/(м2·K), линейную плотность теплового потока ql, Вт/м и температуру наружной поверхности паропровода t3, °С. Исходные данные приведены в таблице 8.7.


Ответить на вопросы:
- Сформулируйте закон теплопроводности Фурье и дайте его математическое выражение.
- Какой физический смысл коэффициента теплопроводности λ?
- От чего зависит коэффициент теплопроводности газов? Каков порядок его величины?
- Для каких материалов коэффициент теплопроводности λ больше и почему: а) для изоляционных материалов, б) для металлов.
Выбрать вариант задачи
27.96 Определить поверхность нагрева стального рекуперативного газовоздушного теплообменника (толщина стенок δс=3 мм) при прямоточной и противоточной схемах движения теплоносителей (рис. 6.2 и 6.3), если объемный расход воздуха при нормальных условиях Vн, средний коэффициент теплоотдачи от воздуха к поверхности нагрева α1, от поверхности нагрева к воде α2=500 Вт/(м²·К), коэффициент теплопроводности материала стенки трубы (стали) λ=50 Вт/(м·К), теплоемкость топочных газов сг=1,15 кДж/(кг·К), плотность ρг=1,23 кг/м³, начальные и конечные температуры газов и воды равны соответственно t1.н, t1.к, t2.н и t2.к. Определить также расход воды G через теплообменник. Изобразить график изменения температур теплоносителей для обеих схем при различных соотношениях их условных эквивалентов. Исходные данные для расчета приведены в таблице 8.8
Указание: При решении задачи можно условно считать стенку плоской.

Ответить на вопросы:
1. Какая схема движения теплоносителя выгоднее?
2. Покажите (из рассмотрения формулы), какими способами можно увеличить коэффициент теплопередачи.
3. При каких значениях d2/d1 (близких к единице или гораздо больших единицы) цилиндрическую стенку можно в расчетах заменить без больших погрешностей плоской стенкой?
Выбрать вариант задачи
Методические указания 2018 года.pdf
22.178 Паропровод диаметром d2/d1 покрыт двухслойной изоляцией (рис. 2.1). Толщина первого слоя изоляции δ2, второго – δ3, мм. Коэффициенты теплопроводности изолируемой трубы и слоев изоляции соответственно равны λ1, λ2, λ3, Вт/(м·К). Температура внутренней и внешней поверхностей паропровода соответственно t1 и t4, °С. Определите тепловые потери одного метра длины трубопровода ql, Вт/м и температуры на поверхностях раздела отдельных слоев t2 и t3, °С. Остальные исходные данные приведены в таблице 2.1.
Таблица 2.1
| Вариант 23 | ||||
| d2, мм | d1, мм | δ3, мм | δ2, мм | λ1, Вт/(м·К) |
| 130 | 120 | 35 | 55 | 40 |
Окончание таблицы 2.1
| λ2, Вт/(м·К) | λ3, Вт/(м·К) | t1, °С | t4, °С |
| 0,13 | 0,07 | 150 | 30 |
27.90 Определите поверхность нагрева стального рекуперативного газовоздушного теплообменника (толщина стенок δс=3 мм) при прямоточной и противоточной схемах движения теплоносителей (рис. 2.5).
Объемный расход топочных газов при нормальных условиях Vн, м3/ч, средний коэффициент теплоотдачи от воздуха к поверхности нагрева α1, Вт/(м2·К), от поверхности нагрева к воде α2=500 Вт/(м2·К), коэффициент теплопроводности материала стенки трубы (стали) λ=50 Вт/(м·К), начальные и конечные температуры газа и воды равны соответственно t1.н, t1.к, t2.н и t2.к ,°С, теплоемкость топочных газов сг=1,15 кДж/(кг·К), плотность ρг=1,23 кг/м3. Определите также расход воды G, кг/ч через теплообменник. Изобразите график изменения температур теплоносителей для обеих схем. Исходные данные для расчета приведены в таблице 2.8.
Таблица 2.8
| Вариант 03 | |||||
| Vн·10-3, м3/ч | α1, Вт/(м2·К) | t1.н, °С | t1.к, °С | t2.н, °С | t2.к, °С |
| 15 | 70 | 440 | 210 | 25 | 105 |






















































