Суров Г.Я. Гидравлика и гидропривод в примерах и задачах Архангельск: Северный (Арктический) федеральный университет
13.43 На рис. 14.5 приведена схема нерегулируемого объемного гидропривода вращательного движения. Известны: подача насоса Qн, номинальное давление насоса рн, КПД насоса ηн, рабочий объем гидромотора qм, механический КПД гидромотора ηм.м, объемный ηм.о; потери давления в распределителе Δрр, в фильтре Δрф; общая длина l и диаметр d гидролиний, сумма коэффициентов местных сопротивлений Σζ; температура рабочей жидкости Т = 50 ºС; рабочая жидкость – И-20А (ρ = 900 кг/м³, ν50 = 20·10-6 м²/с).
Требуется определить: 1) перепад давления на гидромоторе Δрм; 2) крутящий момент на валу гидромотора Мм.к; 3) частоту вращения вала гидромотора nм; 4) КПД гидропривода.
Таблица 1 – Исходные данные
Вариант | Qн, м³/c·10-3 | рн, МПа | ηн | qм, м³·10-6 | ηм.о |
0 | 0,17 | 10 | 0,85 | 9 | 0,9 |
Конец таблицы 1
ηм.м | Δрр, МПа | Δрф, МПа | l, м | d, мм | Σζ |
0,80 | 0,1 | 0,1 | 6 | 7 | 2 |
13.44 На рис. 14.6 приведена гидравлическая схема объемного гидропривода вращательного движения с дроссельным регулированием. Известны: рабочий объем гидромотора qм, механический ηм.м и объемный ηм.о КПД гидромотора; крутящий момент на валу гидромотора Мм.к; рабочий объем насоса qн; объемный КПД насоса ηн.о = 0,9, КПД насоса ηн = 0,85; частота вращения вала насоса nн = 16с-1; потери давления в распределителе Δрр, дросселе Δрдр, фильтре Δрф. Переливной клапан отрегулирован на давление рпк = 8 МПа.
Требуется определить: 1) расход в гидромоторе Qм; 2) частоту вращения вала гидромотора nм; 3) подачу насоса Qн; 4) потребляемую гидроприводом мощность; 5) КПД гидропривода.
При решении задачи потери давления в гидролиниях не учитывать.
Таблица 1 – Исходные данные
Вариант 0 | |||||||
qм, см³ | ηм.м | Мм.к, Н·м | qн, см³ | ηм.о | Δрр, МПа | Δрдр, МПа | Δрф, МПа |
9 | 0,85 | 6 | 10 | 0,9 | 0,15 | 0,2 | 0,1 |
Варианты задачи: 1, 2, 3, 4, 5.
13.45 Принципиальная схема нерегулируемого объемного гидропривода поступательного движения приведена на рис. 14.7. Известны: диаметр гидравлического цилиндра Dц = 100 мм; диаметр штока dш = 50 мм; ход поршня S = 450 мм; усилие на штоке при рабочем ходе Р; сила трения в уплотнениях поршня и штока гидроцилиндра Fт; частота рабочих циклов (число циклов в секунду) i; потери давления в распределителе Δрр в фильтре Δрф.
Определить: 1) подачу насоса Qн; 2) скорость движения штока при рабочем υp.x и холостом υx.х ходе (рабочий ход соответствует выходу штока из цилиндра); 3) давление насоса при рабочем ходе поршня рн.р; 4) давление насоса при холостом ходе поршня рн.р (при холостом ходе считать Р = 0); 5) КПД гидропривода при рабочем ходе ηр (КПД насоса принять равным 0,8).
Таблица 1 – Исходные данные
Номер варианта | Р, кН | Fт, кН | i, 1/с | Δрр, МПа | Δрф, МПа |
0 | 12 | 1 | 0,075 | 0,1 | 0,1 |
13.46 Диаметр гидравлического цилиндра D, диаметр штока d . При рабочем ходе штока давление в бесштоковой полости цилиндра рб, а в штоковой полости рш = 0,5 МПа. Уплотнение штока и поршня выполнено шевронными резиновыми манжетами (ширина уплотнения штока bш = 15 мм, ширина уплотнения поршня bп = 30 мм). Схема гидравлического цилиндра представлена на рис. 14.8.
Требуется определить: 1) силу трения в уплотнениях поршня Fп и штока Fш при рабочем ходе; 2) усилие на штоке Р; 3) КПД гидроцилиндра при рабочем ходе (рабочий ход соответствует выходу штока из цилиндра).
Таблица 1 – Исходные данные
Номер варианта | D, мм | d, мм | рб, МПа |
0 | 25 | 12 | 16 |