15 Интегралы движения

15.1 Трубка АВ вращается с постоянной угловой скоростью ω вокруг вертикальной оси CD, составляя с ней угол α. В трубке находится пружина жесткости c, один конец которой укреплен в точке A. Ко второму концу пружины прикреплено тело M массы m, скользящее без трения внутри трубки. В недеформированном состоянии длина пружины равна AO=l. Приняв за обобщенную координату расстояние x от тела M до точки O, определить кинетическую энергию T тела M и обобщенный интеграл энергии.Трубка АВ вращается с постоянной угловой скоростью ω вокруг вертикальной оси CD, составляя с ней угол α. В трубке находится пружина жесткости c, один конец которой укреплен в точке A. Ко второму концу пружины прикреплено тело M массы m, скользящее без трения внутри трубки. В недеформированном состоянии длина пружины равна AO=l. Приняв за обобщенную координату расстояние x от тела M до точки O, определить кинетическую энергию T тела M и обобщенный интеграл энергии.

Ответ:

,

.

Учебник: Мещерский И.В. Сборник задач по теоретической механике Москва 1986.pdf


15.2 Интегрирование дифференциальных уравнений движения материальной точки, находящейся под действием постоянных сил

В железнодорожных скальных выемках для защиты кюветов от попадания в них с откосов каменных осыпей устраивается «полка» DC. Учитывая возможность движения камня из наивысшей точки A откоса и полагая при этом его начальную скорость υ0 равной нулю, определить минимальную ширину полки b и скорость υC, с которой камень падает на нее. По участку AB откоса, составляющему угол α с горизонтом и имеющему длину l, камень движется τ c.

При решении задачи считать коэффициент трения скольжения f камня на участке AB постоянным, а сопротивлением воздуха пренебречь.Интегрирование дифференциальных уравнений движения материальной точки, находящейся под действием постоянных сил В железнодорожных скальных выемках для защиты кюветов от попадания в них с откосов каменных осыпей устраивается «полка» DC. Учитывая возможность движения камня из наивысшей точки A откоса и полагая при этом его начальную скорость υ0 равной нулю, определить минимальную ширину полки b и скорость υC, с которой камень падает на нее. По участку AB откоса, составляющему угол α с горизонтом и имеющему длину l, камень движется τ c. При решении задачи считать коэффициент трения скольжения f камня на участке AB постоянным, а сопротивлением воздуха пренебречь.

Таблица 1 – Исходные данные 

υА, м/cα,ºl, мτ, cfh, мβ,º
06041f≠0575


15.3 Интегрирование дифференциальных уравнений движения материальной точки, находящейся под действием постоянных сил

Вариант 6 (рис. 117, схема 2). Лыжник подходит к точке А участка трамплина АВ, наклоненного под углом α к горизонту и имеющего длину l, со скоростью υА. Коэффициент трения скольжения лыж на участке АВ равен f. Лыжник от А до В движется τ с; в точке В со скоростью υВ он покидает трамплин. Через Т с лыжник приземляется со скоростью υС в точке С горы, составляющей угол β с горизонтом.

При решении задачи принять лыжника за материальную точку и не учитывать сопротивление воздуха.

Дано: α = 20º; f = 0,1; τ = 0,2 с; h = 40 м; β = 30º. Определить l и υС.Интегрирование дифференциальных уравнений движения материальной точки, находящейся под действием постоянных сил Вариант 6 (рис. 117, схема 2). Лыжник подходит к точке А участка трамплина АВ, наклоненного под углом α к горизонту и имеющего длину l, со скоростью υА. Коэффициент трения скольжения лыж на участке АВ равен f. Лыжник от А до В движется τ с; в точке В со скоростью υВ он покидает трамплин. Через Т с лыжник приземляется со скоростью υС в точке С горы, составляющей угол β с горизонтом. При решении задачи принять лыжника за материальную точку и не учитывать сопротивление воздуха. Дано: α = 20º; f = 0,1; τ = 0,2 с; h = 40 м; β = 30º. Определить l и υС.


15.4 Интегрирование дифференциальных уравнений движения материальной точки, находящейся под действием постоянных сил

Вариант 8 (рис. 117, схема 2). Лыжник подходит к точке А участка трамплина АВ, наклоненного под углом α к горизонту и имеющего длину l, со скоростью υА. Коэффициент трения скольжения лыж на участке АВ равен f. Лыжник от А до В движется τ с; в точке В со скоростью υВ он покидает трамплин. Через Т с лыжник приземляется со скоростью υС в точке С горы, составляющей угол β с горизонтом.

При решении задачи принять лыжника за материальную точку и не учитывать сопротивление воздуха.Интегрирование дифференциальных уравнений движения материальной точки, находящейся под действием постоянных сил Вариант 6 (рис. 117, схема 2). Лыжник подходит к точке А участка трамплина АВ, наклоненного под углом α к горизонту и имеющего длину l, со скоростью υА. Коэффициент трения скольжения лыж на участке АВ равен f. Лыжник от А до В движется τ с; в точке В со скоростью υВ он покидает трамплин. Через Т с лыжник приземляется со скоростью υС в точке С горы, составляющей угол β с горизонтом. При решении задачи принять лыжника за материальную точку и не учитывать сопротивление воздуха. Дано: α = 20º; f = 0,1; τ = 0,2 с; h = 40 м; β = 30º. Определить l и υС.

Дано: υА = 21 м/с; f = 0; τ = 0,3 с; υВ = 20 м/с; β = 60º. Определить α и d.


15.5 Применение основных теорем динамики к исследованию движения материальной точки

Шарик, принимаемый за материальную точку, движется из положения А внутри трубки, ось которой расположена в вертикальной плоскости (рис. 135-137). Найти скорость шарика в положениях В и С и давление шарика на стенку трубки в положении С. Трением на криволинейных участках траектории пренебречь. В вариантах 3, 6, 7, 10, 13, 15, 17, 19, 25, 28, 29 шарик, пройдя путь h0, отделяется от пружины.Применение основных теорем динамики к исследованию движения материальной точки Шарик, принимаемый за материальную точку, движется из положения А внутри трубки, ось которой расположена в вертикальной плоскости (рис. 135-137). Найти скорость шарика в положениях В и С и давление шарика на стенку трубки в положении С. Трением на криволинейных участках траектории пренебречь. В вариантах 3, 6, 7, 10, 13, 15, 17, 19, 25, 28, 29 шарик, пройдя путь h0, отделяется от пружины. В задании приняты следующие обозначения: m – масса шарика; υА – начальная скорость шарика; τ – время движения шарика на участке АВ (в вариантах 1, 2, 5, 8, 14, 18, 20, 21, 23, 24, 27, 30) или на участке BD (в вариантах 3, 4, 6, 7, 9 – 13, 15 – 17, 19, 22, 25, 26, 28, 29); f – коэффициент трения скольжения шарика по стенке трубки; h0 – начальная деформация пружины; h – наибольшее сжатие пружины; с – коэффициент жесткости пружины; Н – наибольшая высота подъема шарика; s – путь, пройденный шариком до остановки.

Необходимые для решения данные приведены в табл. 42.

Таблица 42

Номер варианта (рис. 135-137) m, кг υА, м/с τ, с R, м f
8 0,2 1 0,5 1,5 0,15

Конец таблицы 42

α, град β, град h0, см с, Н/см Величины,

которые требуется

определить дополнительно

30 60 0 4 h

В задании приняты следующие обозначения: m – масса шарика; υА – начальная скорость шарика; τ – время движения шарика на участке АВ (в вариантах 1, 2, 5, 8, 14, 18, 20, 21, 23, 24, 27, 30) или на участке BD (в вариантах 3, 4, 6, 7, 9 – 13, 15 – 17, 19, 22, 25, 26, 28, 29); f – коэффициент трения скольжения шарика по стенке трубки; h0 – начальная деформация пружины; h – наибольшее сжатие пружины; с – коэффициент жесткости пружины; Н – наибольшая высота подъема шарика; s – путь, пройденный шариком до остановки.


15.6 Интегрирование дифференциальных уравнений движения материальной точки, находящейся под действием переменных сил

Найти уравнения движения тела М массой m (рис. 119-121), принимаемого за материальную точку и находящегося под действием переменной силы Р = Xi + Yj + Zk, при заданных начальных условиях. Во всех вариантах ось z (где показана) вертикальная, за исключением вариантов 8 и 30.

Необходимые для решения данные приведены в табл. 39, в которой приняты следующие обозначения: i, j, k,  — орты координатных осей (соответственно х, у, z); g – ускорение свободного падения (9,81 м/с²); f – коэффициент трения скольжения; t – время, с; х, у, z, х′, у′, z′  — координаты точки и проекции ее скорости на оси координат соответственно, м и м/с.

Во всех случаях, где сила  зависит от х, х′, у′, z′, рассмотреть движение точки, при котором эти величины только положительны.Интегрирование дифференциальных уравнений движения материальной точки, находящейся под действием переменных сил Найти уравнения движения тела М массой m (рис. 119-121), принимаемого за материальную точку и находящегося под действием переменной силы Р = Xi + Yj + Zk, при заданных начальных условиях. Во всех вариантах ось z (где показана) вертикальная, за исключением вариантов 8 и 30. Необходимые для решения данные приведены в табл. 39, в которой приняты следующие обозначения: i, j, k,  - орты координатных осей (соответственно х, у, z); g – ускорение свободного падения (9,81 м/с²); f – коэффициент трения скольжения; t – время, с; х, у, z, х′, у′, z′  - координаты точки и проекции ее скорости на оси координат соответственно, м и м/с. Во всех случаях, где сила  зависит от х, х′, у′, z′, рассмотреть движение точки, при котором эти величины только положительны.

Таблица 39

Номер варианта (рис. 119-121) m, кг , Н Начальные условия
f х0 у0 z0 х′0 у′0 z′0
м м/c
8 150 0 0 0 0 0,5 2 0

15.7 Применение основных теорем динамики к исследованию движения материальной точки

Шарик, принимаемый за материальную точку, движется из положения А внутри трубки, ось которой расположена в вертикальной плоскости (рис. 135-137). Найти скорость шарика в положениях В и С и давление шарика на стенку трубки в положении С. Трением на криволинейных участках траектории пренебречь. В вариантах 3, 6, 7, 10, 13, 15, 17, 19, 25, 28, 29 шарик, пройдя путь h0, отделяется от пружины.

Необходимые для решения данные приведены в табл. 42.Применение основных теорем динамики к исследованию движения материальной точки Шарик, принимаемый за материальную точку, движется из положения А внутри трубки, ось которой расположена в вертикальной плоскости (рис. 135-137). Найти скорость шарика в положениях В и С и давление шарика на стенку трубки в положении С. Трением на криволинейных участках траектории пренебречь. В вариантах 3, 6, 7, 10, 13, 15, 17, 19, 25, 28, 29 шарик, пройдя путь h0, отделяется от пружины.

Таблица 42

Номер варианта (рис. 135-137) m, кг υА, м/с τ, с R, м f
3 0,4 0 2,0 0,2 0,15

Конец таблицы 42

α, град β, град h0, см с, Н/см Величины, которые требуется

определить дополнительно

30 10 1 υD

В задании приняты следующие обозначения: m – масса шарика; υА – начальная скорость шарика; τ – время движения шарика на участке АВ (в вариантах 1, 2, 5, 8, 14, 18, 20, 21, 23, 24, 27, 30) или на участке BD (в вариантах 3, 4, 6, 7, 9 – 13, 15 – 17, 19, 22, 25, 26, 28, 29); f – коэффициент трения скольжения шарика по стенке трубки; h0 – начальная деформация пружины; h – наибольшее сжатие пружины; с – коэффициент жесткости пружины; Н – наибольшая высота подъема шарика; s – путь, пройденный шариком до остановки.